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1.  Introduction 

As the technology of plasma processing progresses, there is a continuing demand 
for higher plasma density, uniformity over large areas, and greater control over plasma 
parameters to optimize the processes of etching, deposition and surface treatment. A number of 
new high density plasma sources are in use, notably electron cyclotron resonance [1,2], 
inductively coupled plasma [3,4], and helicon reactors [5,6]. All of these technologies, as well as 
the older commercial technology of capacitively-coupled rf discharges, couple energy 
electromagnetically from the external power source into heating of the plasma electrons, which 
then collisionally ionize the gas. At the Naval Research Laboratory we are developing a different 
type of plasma reactor called LAPPS (for large-area plasma processing system), in which a 
magnetically guided sheet electron beam is used to ionize the gas. The LAPPS device is shown 
schematically in Fig. 1. We have routinely produced large-area uniform plasma sheets with 
density in excess of 10 cm . In the present design, the plasma will occupy a volume roughly 
one meter square by a few cm thick. This technology is quite versatile, with potential 
applications in a number of areas including etching, deposition and surface treatment, and it 
offers many advantages. Foremost among these is the independent control that can be exercised 
over each of the important processing parameters: the plasma density, the spatial volume in 
which ionization occurs, the electron temperature (which strongly influences the chemistry), the 
flux of ions to the workpiece, the ion bombardment energy, and the flux of free radicals to the 
workpiece. For additional control over chemistry and substrate charging, the beam can easily be 
operated in either a pulsed or cw mode. Furthermore, electron beams are unusually efficient 
plasma sources, with roughly half the deposited energy going into ionization, and only a small 
fraction going into low-lying excitations. 

LAPPS grew out of the NRL agile mirror project, where the goal was to produce a sheet 
plasma that could be reoriented electronically to steer a radar beam [7-13], or to serve as a fast, 
high-power microwave switch [14]. As a result of this work, which was carried out over a period 
of seven years, considerable understanding was gained of plasma production by sheet electron 
beams [10,11], and beam production by hollow cathodes [14]. It is this knowledge base that is 
now being applied to LAPPS. Typical operating parameters in LAPPS are gas pressure 10 to 500 
mTorr, beam voltage several keV, beam current density 5-50 mA/cm^, and plasma density up to 
5xl012 cm-3. A magnetic field of 50-300 G is used to confine the beam and thereby produce a 
planar plasma. In experiments done to date, the beam source has been the hollow cathode source 
used in the agile mirror. Hollow cathodes offer advantages over both thermionic electron sources 
(which rarely are consistent with the corrosive gases at relative high pressure in processing 
systems), and thin foils to separate beam production from plasma (which greatly degrade the 
beam energy). We are now investigating improved hollow cathode sources which may offer 
steady state operation at greater efficiency [15,16]. 

Several initial LAPPS experiments have been done. These include a demonstration of 
plasma sheet production with high uniformity over areas up to 60 cm x 60 cm, approximate 
determination of the ion flux to an adjacent substrate, and etching of a patterned photo-resist. 
The latter two experiments were done in oxygen, but the LAPPS scheme works well in any gas, 
and over a wide pressure range.  Shown in Fig. 2 are the photoresist etch patterns, which were 
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achieved at an etch rate exceeding 6 (im per minute of beam on-time. In this initial experiment 
the etching was done without rf bias, and the undercut seen in Fig. 2 indicates that the etch was 
nearly isotropic, as expected. Etch experiments with rf bias are in progress. Initial results 
indicate a highly anisotropic etch [17]. 

In this paper we present an initial analysis of LAPPS, including a brief discussion of the 
preliminary experiments. (Full details of the experiments will be reported separately.) LAPPS 
differs from most of the traditional plasma sources in many ways, most notably in that the plasma 
is created by an externally controllable beam rather than by dissipating electromagnetic energy in 
the plasma, and ions are transported to the workpiece across a magnetic field, whose magnitude 
is such that the electrons are strongly magnetized but the ions are essentially unmagnetized. In 
the next two sections, we consider the production of plasma and free radicals by electrons beams 
in gas, and for specificity we apply the analysis to oxygen. In Sec. 4 we discuss cross-field ion 
transport to a substrate. We show first that for cross field flow, the usual Böhm condition holds 
between the plasma and sheath. Furthermore, in the parameter regime of interest to LAPPS the 
magnetic field has little effect on the sheath, although for very high fields it would reduce the dc 
sheath potential. We then show that the flux depends on the value of magnetic field, the 
pressure, the distance from the plasma source to the substrate, the question of whether the 
substrate is a conductor or insulator, and (in the latter case) the dc bias of the substrate. We also 
consider the issue of flux uniformity, and show that a very high degree of uniformity is to be 
expected over a large area insulating substrate. These results, are compared to a preliminary 
experiment in Sec. 5. Finally in Sec. 6 we summarize and briefly discuss new experiments 
underway. 



2. Beam Propagation and Plasma Production 

In this section we discuss the production and maintenance of a plasma by a magnetized 
electron beam. The key collisional processes considered are energy loss, ionization, and elastic 
scattering. The energy loss rate, in cgs units, for a non-relativistic beam in gas is given by the 
Bethe formula [18], 

de _ 27tnmolZmole
4 ^ e ^ 

ds e EQ ' 

where e is the beam energy, s is the distance traversed by a beam electron, nmoi is the number 
density of neutral gas molecules, Z„,0i is the number of bound electrons in a molecule, e is the 
electron charge, and £,, ~ 100 eV is the mean excitation energy of the gas molecules. Integration 
of Eq. (1) indicates that the range of the beam electrons is approximately equal to 

R = 2 
2 
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(      8^ In— 
•l 

(2) 

The range R must exceed the system length L in order to maintain uniformity. In the case of 
oxygen, Eqs. (1) and (2) indicate that the requirement is 

V2 

nmolL<2.4xlOn . (3) mo1 ln(V/100) 

where V is now the beam energy in eV. As an example, if L = 100 cm and V = 3 keV, the 
molecule density should be nmoi < 5.4xl015 cm"3, i.e. pressure < 150 mTorr at room temperature. 

The volumetric ionization rate, i.e. the rate of increase of plasma electron density n« due 
to beam ionization, is 

s=(1+g)^i-f"(1+g):7n-0' (4) 

where Jb is the beam current density flowing in the z direction and z-x is the mean energy 

deposited per electron-ion pair created. Here g s vx
(rmsVvz is a correction factor representing the 

angular spread of electron velocities within the beam; in propagating an axial distance Az, a 
beam   electron   traverses   on   average   a   path   length    As = (l + g)Az.      The   quantity 

G; =(d£/ds)(nmolei)_1 is an effective ionization cross section, which includes the ionization 
produced by energetic secondaries, tertiaries, etc. In oxygen[19]Ej =31 eV, and consequently 



ai = 1'3xl°     ln(V/100)cm2, (5) 

where V is in eV. Note that as the beam propagates in z, the beam energy V decreases and thus 
d increases. It should also be noted that e{ =31 eV (a number which is typical for all gas 
species) is very low compared to the energy input per electron ion pair for ICP, helicon or ECR 
discharges. Thus LAPPS can be significantly more efficient than typical processing discharges 
even if L « R and only a fraction of the beam energy is deposited in the plasma. 

Elastic scattering of beam electrons off gas atoms increases the angular spread of beam 
velocities, at a rate 

dgl 
dz 

where [20] 

= 2nmolcm, (6a) 

«7     V 
gm(e)= 2    ln(V/Vt) (6b) 

2OE 

is the momentum-loss cross-section for beam-molecule collisions. Here a is the number of 
atoms per molecule, and Vi =1.7[Zmoi/a]2/3. In the absence of any confining force, scattering 
would lead to spatial spreading of the beam. Therefore a longitudinal magnetic field B is applied 
to confine the beam. As shown in [11], a strong field limits the increase in the mean-squared 
beam thickness to less than 2rmax

2 over the beam range R, where w = 3.1V1/2/B is the maximum 
electron gyroradius radius in cm and B is in G. A 200 G field is therefore sufficient to keep the 
beam thickness approximately constant if the initial thickness is a few cm and V < 3 keV. In the 
operating regime for LAPPS, the beam energy loss rate from Eq. (1) is generally more rapid than 
the elastic scattering rate from Eq. (6), and one can assume g < 1. 

The efficiency of the beam in ionizing gas increases with propagation distance z, because 
of the increase of Oi as the beam energy decreases, and also because of the increase of the 
geometric factor g due to elastic scattering. As a result, the plasma density will tend to increase 
with z. For applications requiring a high degree of uniformity in the z direction, the system 
length L should be limited to L « R. In this case, it is advantageous to collect and recover the 
unused beam energy. In addition, there are several adjustments which can easily be made to 
minimize any residual process non-uniformity: the magnetic field can be tapered, and/or the 
processing stage can be tilted with respect to the plasma sheet. In addition, the substrate could be 
rotated during processing, or in some cases moved through the LAPPS device on a continuous 
feed belt. 

In LAPPS, the plasma electron temperature Te will generally be low. The reason is that 
inelastic (e.g. vibrational) collisions cool the electrons very effectively in molecular gases, and 



there are no electric fields to heat them [11]. Langmuir probe measurements on oxygen LAPPS 
plasmas [21], have given preliminary estimates of the electron temperature of about 0.6 eV. As a 
consequence, the density of negative ions will be low in an oxygen plasma; the two body 
dissociative attachment process which creates this ion requires an electron of energy 4 to 8 eV 
[22]. (For a halogen gases like chlorine, the two body dissociative attachment is exothermic, and 
negative ions could play a much more important role on cross field ion transport. We will 
consider this in a future work.) 

For simplicity, we shall assume throughout the paper that the dominant ion is C>2+, with 
density n; = n« in the quasi-neutral bulk plasma. Dissociative recombination between the plasma 
electrons and positive molecular ions limits the ion density. The volumetric loss rate is ßn«2, 
where ß is the dissociative recombination rate coefficient. In steady state, if there is no diffusion, 
the loss rate balances the production rate, and hence 

n.-Ji=-fl.. (6) *e 

where we have let g = 1 for simplicity. If diffusion is included, Eq. (6) gives an upper limit for 
the ion density. For an oxygen plasma in LAPPS [23], 

ß(cm3/s) - 2.4xl0"8Te-1/2(eV) (7) 

while <Ji ~ 10 16 cm2 for V = 3xl03  eV.    A beam current density of Jb = 10 mA/cm2 is then 
ede 

cm-3). The nominal beam range in that case is R = 150 cm. 
needed to produce a plasma of density n« = 1012 cm 3 in 100 mTorr of oxygen (nraoi = 3xl015 



3. Free-Radical Production 

Free radicals which are active in surface processing can be produced directly by beam- 
impact dissociation (e.g., e + 02-»e + 0 + 0, with cross-section cd), or beam-impact 

dissociative ionization (e.g., e + 02 -» 2e + O + 0+, with cross-section cdi). In addition, radicals 
can be produced indirectly by beam-impact ionization, with cross-section Oi, followed by 
dissociative recombination between a plasma electron and a molecular ion (e.g., 

e + o2
+ -» O + O). Dissociation of neutral molecules by plasma-electron impact is usually 

negligible in beam-produced plasmas, because the electron temperature is too low, Te < 1 eV. 
The total volumetric production rate of free radicals is thus at most equal to 

sr =^rnmol(ai + adi+ad), (8) 

under conditions such that every 02
+ ion undergoes dissociative recombination in the plasma to 

form two O radicals, and every 0+ ion recombines on a surface to form one O atom. In steady 
state, the flux of free radicals to a substrate located on one side of the plasma sheet is thus limited 
to 

r_armaxz 2aJbnmol(Gj + <% + <%) (9^ 
r       r e 

where a is the beam half-thickness. In most cases, Oi is the largest of the beam-impact cross- 

sections, but in many molecular gases od is of the order of ^Oj; the cross-section odi is usually 

smaller. In oxygen, however, cd « o*i and beam-impact dissociation can be neglected [24]. 
Thus dissociative recombination is the dominant process leading to creation of free radicals. For 
a = 1 cm, and the parameters listed earlier (Jb = 10 mA/cm2, n^i = 3xl015 cm-3 and Oj = 10~16 

16 
cm2), the maximum flux of free radicals is about 4x10   atoms /cm -s. 

In many situations, it is desirable to maximize the flux of ions to the substrate. In those 
cases, it is generally possible in LAPPS (as discussed in detail in the next section) to choose 
parameters (plasma density he, plasma sheet thickness 2a, standoff distance b-a to the substrate) 
so that most of the ions transport to the substrate rather than undergoing dissociative 
recombination. The flux of radicals is then reduced. One of the advantages of LAPPS is that it 
is possible to control both the ion flux and neutral radical flux at the substrate. 



4. Ion Transport 

Many plasma-processing applications require ion bombardment of the workpiece in 
addition to a flow of free radicals. The physics of ion transport in LAPPS differs in important 
respects from the more familiar processing discharges, for several reasons: (i) The plasma is 
created by an external source (the electron beam) rather than by local absorption of 
electromagnetic energy, and ionization only occurs in a well defined spatial region, (ii) The 
geometrical configuration is unusual, consisting of a plasma sheet that is wide in two dimensions 
but narrow in the third, and typically located within a vessel of similarly large aspect ratio, (iii) 
The plasma transport to the workpiece is transverse to the external magnetic field, whose 
magnitude is such that the electrons are well magnetized but the ions are essentially 
unmagnetized. In this section we shall examine the ion flow to the workpiece and the vessel 
walls, under the conditions appropriate to LAPPS. Parts of this discussion are also applicable to 
other cross-field processing configurations, such as magnetically enhanced reactive ion etching 
(MERE). [25,26]. 

4.1 The Böhm Condition in a Weakly Magnetized Plasma 

In any discharge, the bulk plasma is quasineutral but adjacent to any surface there is 
normally a positively-charged ion-rich sheath. Within the bulk plasma, the ions are accelerated 
toward the surface, with the electrons maintaining quasineutrality until an abrupt transition 
occurs which marks the onset of the non-neutral sheath. If the quasineutral fluid equations are 
used to model the bulk plasma, this transition appears as a singularity in the equations [27] when 
the ion flow velocity component u« normal to the surface reaches the Böhm velocity, which is 

Uix = (Te/M)1/2=cs (10) 

for a single-component plasma with cold ions, where Te is the electron temperature and M is the 
ion mass. The Böhm condition can be thought of as the boundary condition to the bulk flow. 
We shall show here that the singularity of the quasineutral fluid equations is unaffected by a 
weak magnetic field. We then show that an ion-rich sheath occurs in much the same way in a 
magnetized plasma, but that the sheath characteristics are somewhat modified if B is strong. We 
assume that the magnetic field B is uniform and take it to be in the z direction, with the plasma 
sheet in the yz plane and all variation in the x direction (normal to the bounding surface). The 
ions are represented as unmagnetized, since their gyrofrequency is small relative to the collision 
frequency. For electrons, the opposite is true, and both the Lorentz force and the collisional drag 
are included in the treatment. 

In the quasi-neutral plasma the electrons and ions have equal density n, and the ion 
momentum equation along x is given in steady state by 

Muix-^i2L = eEx-MViUix, (11) 1X dx * > K» 



where Ex is the electric field, Vi is the ion-neutral collision frequency (primarily for charge- 
exchange collisions), and we assume cold ions for simplicity. For the electrons, we neglect 
inertia in the x component of the momentum equation, but retain the magnetic force: 

ey 0 = -eE -eB-^-—*- 
T. dn 
n dx 

mv.u. (12) 

where ve is the electron-neutral momentum transfer collision frequency. Because of the magnetic 
field, an electron Hall current is driven in the y direction, governed by the momentum equation 

duev        u 
mu„ —- = eB -£2- - mveuev. ex dx c e ey (13) 

Following the flow in x (that is from the center of the LAPPS plasma toward the substrate), Eq. 
(13) shows that uey rapidly asymptotes to 

a 
(14) 

where Qe=eB/mc is the electron gyrofrequency. Using (12) and (14) to eliminate Ex and 1%, Eq. 
(11) becomes 

MU^—SL^. ■mveuex MviUix. 
dx n dx 

To eliminate dn/dx, we use the ion continuity equation, 

(15) 

—(nuu) = S-ßn2. (16) 

Equation (15) can be rewritten as 

du; 
MVjUix + mve 1 + —* 

dx 
IX  _ 

uexUix+^(S-ßn2) 

Te-Muix^ 
(17) 

Although the numerator of (17) is modified by the effect of the magnetic field on the electrons, 
the Böhm singularity condition, Eq. (10), arises from the denominator and is completely 
independent of B. When finite ion temperature is important, a more careful kinetic treatment is 
needed to derive a generalized Böhm condition [28], but it remains true that the effect of the 
magnetic field on the electrons does not modify the Böhm condition. 



Equation (17) is valid in the quasi-neutral plasma up to the singular point, u^ = cs. In the 
central region where the flow velocity is very low, the term on the left hand side of Eq. (15) can 
be neglected. This leads to the diffusion approximation. As the plasma accelerates to the 
singularity, ion inertia becomes more and more important and the diffusion model breaks down. 
The plasma then forms a quasi-neutral presheath, typically of length of order the ion mean free 
path, A,. This presheath eventually has a transition to the non-neutral sheath when the Böhm 
condition is satisfied. 

4.2. Cross-Field Ion Flow to an Insulating Surface 

Ion flow across the magnetic field to an insulating surface is of special interest, since in 
most cases the workpiece to be processed will be an insulator. An insulating surface cannot 
sustain a steady state electric current at any point, and hence 

nexUex=nixuix <18a) 

along this surface (assumed to be in the yz plane). If the plasma flow is one dimensional along 
the x axis (one dimensional across the field), then Eq. (18a) holds everywhere in the plasma as 
well, so in the quasi-neutral plasma, UeX = u«. That is the plasma flow in one dimension must be 
ambipolar. In this case, Eq. (15) can be rewritten as 

Mulx^=-i^-Mvi-uix, (18b) 
dx n dx 

where 

mv * 
Vi*SVi+   M   ' (18C) 

and 

(     n2\ 
v* = v ve ve 

n e 1 + -     2 
Q2 

-£-, (18d) 

since Qe» ve. The effective mobility of the ions is reduced by the need to drag the electrons 
across the magnetic field. The effective ion collision frequency v;* reaches a minimum at a 
pressure P*(B) such that 

m 
M VcVi^e2- (19) 



As the pressure increases above P*(B), V;* increases as ion collisionality dominates; for pressure 
decreasing below P*(B), Vi* increases due to the difficulty of dragging the magnetized electrons 
across the field lines. In 02 plasma, we use the values Ve/ng~ 4xl(T8Te

2/3(eV) (cm3/s) [29] and 
Vi/ng - 5xl(T10 (cm3/s) [30] nearly independent of ion temperature. Under typical LAPPS 
operating conditions, the magnetization of the electrons retards the ambipolar ion flow, but at 
most by a factor of five or so, even though the electrons are strongly magnetized. 

The singularity at the Böhm condition is associated with a sudden steepening of the 
gradients in ux and n, which leads to a breakdown of quasineutrality. To better understand this 
effect qualitatively, let us consider the simplified model of quasineutral ambipolar diffusive flow 
in the bulk plasma, as represented by Eqs. (18) with the inertial terms on the LHS dropped. 
Eliminating u« and referring back to Eq. (11), we find an expression for the ambipolar electric 
field, 

eE^-^i-. (20) 
v;*   n dx 

Using Gauss's law, the quasineutrality requirement IüJ- nel« n can be written as 

^LXD2^L£<<1? (21) 
vf    D     dx2 

where 5lD = (TeAtane2)172 is the Debye length. Hence quasineutrality fails, and the electron and 
ion flows separate, once the gradient scale length becomes shorter than X,D(Vi N*)1 . In the usual 
unmagnetized case, the minimum gradient scale for quasineutral flow is simply XD. The presence 
of a magnetic field transverse to the flow decreases the electron mobility and thereby increases 
the steepness allowed for quasineutral flow. 

4.3. The Sheath for a Magnetized-Electron Plasma 

Since the transition from the quasineutral bulk plasma to an ion-rich sheath can only 
occur at a point where the Böhm condition (10) is satisfied, it follows that the ions must be 
accelerated up to the sound speed in the quasineutral region, if there is to be an ion-rich sheath. 
The only other alternative is that the ion flow is entirely subsonic, and there is no sheath. In an 
unmagnetized plasma, it is clear that there must always be an ion-rich sheath at any floating 
surface, since n«. < ni is required at the surface to equalize the flux of mobile electrons and less 
mobile ions to the surface. One might wonder whether this is always true for flow across a 
magnetic field, where the mobility of the magnetized electrons can be greatly reduced. To 
address this question, let us return to Eq. (13) and note that within the sheath the inertial term on 
the left hand side dominates the collisional term, so that 1% is given by 

10 



Uey(x) = Uey(xs) + Qe(x-Xs) = ße —+(x-xs) (22) 

where xs is the location of the sheath/plasma interface and Uey(xs) = ßeC</ve fr°
m Eq. (14). Using 

Eq. (22) and ignoring collisions in the sheath, we can integrate Eq. (12) from the sheath edge, xs, 
to obtain the electron density in the sheath, 

ne(x) 

ne(xs) 
= exp< 

1 a l 
e[(|>(x)-<|>(xs)]—^mcs(x-xs)--m£V(x-xs)

2 (23) 

Equation (23) is an extension of the usual Boltzmann relation. The negative potential 
drop given by the first term causes ric to fall off in the sheath. The two magnetic terms are also 
negative and thus the effect of the magnetic field is to further decrease n« in the sheath. This 
occurs because electrons can only flow into the sheath from the plasma, and the magnetic field 
impedes this flow. Therefore an ion-rich sheath will indeed occur for any value of the magnetic 
field, and the usual Böhm condition must be satisfied at the transition from quasineutral bulk 
plasma to ion-rich sheath. At an insulating surface, the sheath structure and sheath potential are 
determined primarily by the floating condition, which requires that the ion flux to the substrate 
equal the electron flux. But the ion flux is n(xs)cs, since no significant ionization or 
recombination occurs in the sheath, while the electron flux is ^(bJCT^ran)1/2 for electrons with 
a Maxwell-Boltzmann distribution. Thus 

ne(b) _ J27tm 

ne(xs)~V~M~ 
= exp 

T 
e[(Kb)-(j>(xs)]- ^mcs(b-xs)-Ima2(b-xs)

2 ■.(24) 

Equation (24) indicates that the sheath width A = (b - xs) shrinks when the magnetic terms are 
important. Since the width of the unmagnetized sheath is a few XD, the last term in (24) becomes 
significant when Qe>oöp, where C0p is the electron plasma frequency. The sheath width can then 
shrink to the order of the electron gyroradius re. The second term in (24) results from the 
transverse electron flow uey induced in the bulk plasma (which persists in the sheath due to 

— 1 to 
inertia). This term is significant when   Qe /vecop>(M/m)    . In the usual operating regime 

of LAPPS these magnetic effects are small, and the sheath is effectively unmagnetized. However 
if ns falls below about 1010 cm-3, which can occur if the substrate is remote from the plasma 
sheet, or if the pressure is less than a few mTorr, magnetic effects can become important. In 
these cases, the sheath width A is reduced. The potential drop §s across the sheath is related to A 
by the Langmuir-Childs law governing ion flow, and thus is also smaller than the usual floating 
potential for an unmagnetized plasma, 

4s<ITelnpL 
Ys    2  e      27tm 

(25a) 

11 



For an oxygen plasma in LAPPS, typically <))s < 5 eV. For applications such as anisotropic 
etching, where a much larger ion bombardment energy is needed, it is necessary to use rf bias to 
accelerate the ions to the substrate. 

Finally if the wall is a conductor and collects current density J, the sheath potential <j>(b)- 

<}>(xs) will be determined by by 

n(xs)ecs -ne(b)e[Te I2%mf2 = J, (25b) 

with iuCb) related to <)>(b)-<|>(xs) by Eq. (24). 

4.4. Approximations to the Fluid Motion 

The problem of determining the ion fluid motion can be approached at any of several 
levels of approximation. The most complete treatment is to integrate the complete fluid 
equations (11), (12), (14) and (16) from the center of the plasma up to the point xs where uu = cs. 
At this point the equations become singular and one patches on the sheath model described in the 
previous section. For zero current (floating surface), the boundary condition u« = cs also applies 
at xs, and the sheath potential is determined by Eq. (25a), with an equality in the usual case where 
magnetic effects are unimportant in the sheath. For conducting surfaces, Eqs. (25b) and (24) are 
used to specify u« at xs. This treatment includes both collisional and ion-inertial effects, and 
thus properly resolves both the bulk plasma (where collisions dominate) and the presheath 
(where ion inertia dominates). It gives an accurate expression for the potential profile across the 
quasi-neutral plasma. 

A simpler model is to drop the ion inertia term on the LHS of Eq. (11), thereby reducing 
the fluid equations to diffusion equations, which are applied from the center of the plasma up to 
xs. The boundary condition ncs = -Ddn/dx is then applied at xs, and the sheath model is again 
patched on at that point. (Here D is the appropriate diffusion coefficient, which will be discussed 
at length in the next three subsections.) This approach yields an accurate result for the ion flux to 
the surface, provided the plasma size is large compared to the ion mean free path A* and the 
Debye length AD- This holds because the ion flux is simply the volumetric integral of the 
ionization rate less the recombination rate, and when A* and AD are small the only significant 
contribution to this integral is from the bulk plasma. This diffusion model will also give a good 
approximation to the density and potential profile within the bulk plasma, but it does not 
correctly describe these quantities in the presheath, i.e. the last ion mean free path before xs. 

A still simpler approximation is to use the diffusion model right up to the bounding 
surface at x = b, and apply the boundary condition n = 0 at b. The flux to the surface is then 
given by -Ddn/dx, and it is not necessary to use the Böhm condition as a boundary condition to 
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the fluid equations. If the plasma size is large compared to A, and \D, and n(xs) is much less than 
the central density, this simple model gives a good approximation to the ion flux to the surface, 
and also to the density and potential profile within the bulk plasma, but it does not correctly 
describe the presheath and it completely omits the potential drop in the sheath. As we shall see 
in the next subsection, it also has the advantage of reducing the dimension of the parameter space 
which characterizes the solutions. 

4.5. One Dimensional Diffusion Model for LAPPS 

LAPPS differs from other plasma sources in that essentially all of the ionization occurs in 
a well-defined source region - a < x < a, determined by the thickness of the sheet electron beam. 
It is a very broad plasma, essentially forming a sheet. For processing, a substrate will be placed 
adjacent to the plasma, but outside the source region, so as to avoid bombardment by the beam. 
Since the plasma sheet is very broad, the configuration is very nearly one dimensional, with 
variation mainly in the dimension x, perpendicular to the plasma sheet. Thus we begin our 
calculations of ion transport in this section with a one dimensional diffusion model. In the next 
two sections, we shall extend the model to two dimensions, to address the issue of uniformity 
along the magnetic field. 

The LAPPS plasma consists of the source region as well as. a transport region a < x < b, 
where b is the substrate location. For simplicity, we shall assume a symmetric situation with 
identical substrates on each side of the plasma sheet at ±b. A schematic illustration of the typical 
plasma density profile is shown in Fig. 3. One of the advantages of LAPPS is that the ion flux to 
the substrate depends on the values of a, b, Jb, the gas pressure P, and the gas species (because 
recombination is important for molecular gases, but not for atomic gases). By adjusting one or 
more of these variables, one can control the ratio of ion flux to neutral radical flux, over a wide 
range. 

Since we assume b » Xj, the central density is much larger than the edge density, and 
because we are most interested in central density and edge flux, we use a diffusion model with 
the boundary condition that the density vanishes at the wall. The ambipolar diffusion coefficient 
is given according to earlier analysis by 

T T 
D  =—— = s . (26) 

Mvf    MVj+mv* 

With this approximation, Eq.  (16) reduces to a diffusion equation which also includes 
recombination and (in the region - a < x < a) ionization, 

d2n        , 
Da—=- = ßn2-S, forO<x<a, (27a) 

dx 
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d2n    0 2 

dx 
for a < x < b. (27b) 

Attachment can be ignored in oxygen because the electron temperature and gas density are both 
low in LAPPS. As boundary conditions we take 

n(b) = 0 (28) 

and 

dx 
—      =0, 

x=0 

(29) 

and of course continuity of n and its derivative at x = a. The ion flux Fi is given by 

dn 
F,(x) = -Da 

dx 
(30) 

and we are especially interested in this flux at x=b. 

In Appendix A, we discuss the solution of Eqs. (26-30) in detail.   There, we define 
dimensionless parameters, by scaling the density to 

(31a) no = Vs/ß 

the length to 

xo = 
" D 

and the flux to 

Fo = 
xo 

-il/2 

(31b) 

(31c) 

Here rio is the density as specified by balancing the ionization source against recombination. The 
density of a LAPPS plasma is always less than no, since diffusion only reduces n. The length XQ 

is the distance an ion diffuses in a recombination time (ßno)"1. The dimensionless variables are 
now N = n/no, X = x/x0 and F s Fj/F=-dN/dX. 
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It then turns out that there are only two dimensionless parameters which characterize the 
solution, A = a/x0, and B = b/Xo. There are four parameter regimes, shown in Fig. (4), in which 
one can derive approximate analytic solutions based on A and B-A being either large or small. 
The dimensionless results for central density N0, and flux FB at the wall X=B, in each of the four 
regimes are derived in Appendix A and summarized here. We find: 

Regime 1 (small A and small B-A), no recombination in either the source or transport region: 

N0 = AB + iA2,      FB = A (32a) 

Regime 2       (large A, small B-A), recombination dominated in the source region, but the 
substrate close to the source: 

N  =1 FB=-r= — 7=— (32b) B    V2(B-A) + coth(V2A) 

Regime 3    (small A, large B-A), no recombination in the source region, but recombination is 
important in the transport region to the substrate: 

Mi) "3AM+^    F°=ü^F- (32C) 

Regime 4    (large A, large B-A),   recombination dominant in both the source and transport 
region: 

F°=Ä- (32d) 

If the objective is to maximize the ion flux, then N0 should be as close to unity as possible, and 
B-A should be as small as possible, so as to minimize recombination outside the source region. 

In Regime 1, where recombination is not significant, every ion created in the source 
region 0 < x < a reaches the substrate, and thus the ion flux is proportional to the product of the 
source strength S and the source width a. In this regime, the neutral flux is due entirely to direct 
dissociation of molecules by the beam, and thus is smaller than the ion flux. If the objective is to 
maximize the ion flux, one can locate the substrate immediately adjacent to the source region (B- 
A«l) and increase S and/or a. However either of these changes increases A so that the 
parameters eventually fall in Regime 2. In this regime, the ion density at x=0 reaches its 
recombination-limited value (31a), and the neutral radical flux to the substrate is augmented by 
dissociative recombination in the source region. If the objective is to minimize ion flux to the 
substrate and maximize neutral radical flux, the separation b-a of the substrate from the source 
region can be increased, so that the parameters fall into Regime 3 or 4.   Here the ion flux is 
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independent of the source strength S but falls off as the inverse cube of the offset b-a. In this 
regime, the neutral radical flux is proportional to the source strength and independent of b-a, 
since nearly all ions produced in the source region undergo dissociative recombination, creating 
free radicals which reach the substrate. Because all of the ionization occurs in a very well 
defined source region, LAPPS thus provides the capability to very effectively adjust the ratio of 
ion flux to free-radical flux by choosing appropriate values of lb, the beam current, and B-A, the 
standoff distance, as well as the gas. 

4.6. Two Dimensional Diffusion Model for LAPPS, Insulating Boundary 

In this section we begin our study of uniformity of ion flux to the substrate. To investigate non- 
uniformities in the z-direction (along the magnetic field, where we expect end effects to be most 
significant), we extend the diffusion model of the previous section to two dimensions x and z, 
with x the direction normal to the substrate. We assume that the LAPPS plasma occupies a 
region -b < x <b, -L < z < L, with b«L. In the present section we pay careful attention to the 
boundary conditions on the potential <j)(x,z), but we simplify the problem a bit by ignoring 
recombination and setting b = a so that the collectors are located right at the edge of the beam. 
More complete numerical studies will be presented in future work. The 2-D electron and ion 
momentum equations (with inertia dropped) and the continuity equation are 

mVe*- ue = eV$ - ^- Vn, (33) - n 

MVjUj = -eV<}> (34) 

V.nue=V.nUi=S (35) 

where the anisotropic diagonal tensor v * has component ve in the z-direction (along the field), 

but v* = ve(l + Q2/ve
2) = fle

2/ve in the x-direction (across the field). For LAPPS parameters, 

Qe»ve and thus the electron parallel mobility greatly exceeds the transverse mobility. Using 
Eqs. (33) and (34) to eliminate U; and lie from Eqs. (35) gives two coupled equations for n and <}>, 

V-nV 
vMviy 

= -S, (36a) 

ft,           T       "\ 
V-nv^-1  — V<|> s-Vn  =S. (36b) 

=*     \m mn     ) 
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Note that we have not invoked the ambipolar assumption u« = u;. These coupled Poisson type 
equations for n and <)> can be solved if n and § or their normal derivatives are specified on the 
bounday. 

The analysis of Eqs. (36) is complicated by the fact that these equations apply only in the 
quasineutral bulk plasma, and thus require boundary conditions at the interface between the bulk 
plasma and the sheath, rather than at the wall itself. The boundary condition on the normal 
derivative V±ty is specified by the Böhm condition that the ion velocity normal to the wall be 
equal to the ion sound speed cs. Together with Eq. (34), this gives 

eVx<j> = -MViCs. (37) 

The boundary condition on V±n derives from the electron flow and depends on whether the wall 
is insulating or conducting. In the remainder of this section, we study this boundary value 
problem for the case of an insulating substrate, which is the usual case in plasma processing (and 
also the the simpler case to analyze). Ion flow to a conductor will be considered in the next 
section and in Appendix B. Fortunately, we find that end effects are minimal for insulating 
substrates. In fact, if a conductor is to be processed, uniformity is optimized by placing it on an 
insulator to electrically isolate it from the rest of the circuit. 

At an insulating surface, the boundary condition on Vxn follows from the floating 
condition that there be no electrical current into the wall at any point. Hence, at the plasma- 
sheath interface the normal electron velocity Uex must be equal to the normal ion velocity u^, 
which we know to be cs. Using the electron momentum equation (33), we find that the boundary 
condition at the sheath interface on the side wall (x=±b) is 

n (mve * +MVj )cs = -Te ^ (38a) 
ox 

and at the end wall (z= ± L) is 

n (mve + MVj )cs = -Te ^ (38b) 
oz 

One might think that the electron and ion velocities must be equal everywhere, since there 
is no current to the wall at any point. However this is not generally true. Equation (34) shows 
that Ui is the gradient of a scalar, whereas Eq. (33) shows that v * ue is the gradient of a scalar. 

It follows that Ue and u; cannot be equal everywhere unless the tensor v * is a scalar, or the 
density is separable in the form n(x,z)=n(1)(x) n(2)(z). Neither condition is satisfied in general, 
although the latter is very nearly true when b«L. Furthermore, in a multi-dimensional 
anisotropic plasma, it is not possible in general to decouple n and <j> so that one can write a simple 
diffusion equation for n. 
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As a preliminary to the 2-D analysis, we re-examine the 1-D cross-field diffusion problem 
(L-»oo) with an emphasis on understanding the profiles of both n and <]>. In one dimension, 
quasineutrality does require u—Ui, and as noted in Sec. 4.5 it follows that n satisfies an ambipolar 
diffusion equation with diffusion coefficient Da given by E. (26). The solution to this equation, 
in the present context with b=a, no recombination, and with boundary condition (38a) is 

n(i)=n _S(Mvi+mve*)x2 (39a) 

2Te 

and 

n  _S(Mvi+mve*)b2|Sb (39b) 

2Te cs 

Equations (33) and (34) can be solved for <(>: 

e«l>(1)-<1>o)_       Mv;       ln 

Te MVi+mVg* 

n^ 

vn°y 

(40) 

where <)>o is the potential in the center of the plasma. The superscripts (1) denote 1-D 
dependence in the x-direction. Notice that the relationship between <j> and n is similar to the 
Boltzmann relation, except that the coefficient multiplying the logarithm is less than unity, and 
for strongly magnetized electrons, may be considerably less. For typical LAPPS parameters, this 
coefficient may vary between about 0.1 and 0.5. If the flow is strongly inhibited by the 
magnetization of the electrons, Eq. (40) shows that the potential drop between the center and the 
edge of the quasineutral plasma is reduced. We showed in Sec. 4.3 that the sheath potential drop 
is also reduced by the presence of the magnetic field; although usually only slightly. Hence the 
total potential drop from the central plasma to the wall is reduced by the magnetic field. 

Now let us examine how this solution is modified by the additional boundaries at z=±L. 
Since elliptic equations are stable to small perturbations of the boundary conditions, we do not 
expect that adding finite boundaries at z=±L will have a large effect on the solution away from 
the ends. We shall derive an approximate solution which shows explicitly that for LAPPS 
geometry with b«L, the one-dimensional solution is very nearly correct except in the immediate 
vicinity of the end walls (within a distance of a few times b). 

The set of equations (36) is not exactly separable in x and z. However, we take advantage 
of the high aspect ration (b«L) to write an ansatz in the separated form 
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n(x,z) = n(1)(x)n(2)(z) = n(1)(x) exp /V
2)>> + e(z) (41a) 

- A(D (2)/ <j)(X,Z) = <j>U'(x) + <|>W(z). (41b) 

In addition to separating variables x and z in n(x,z), we have assumed that the x-dependence of n 
and $ is close to the 1-D solutions n(1)(x), <})(1)(x) from Eqs. (39) and (40), we have anticipated a 

logarithmic relation between <)) and n to write <J)(x,z) in an additively separated form, and we have 
written the density dependence n(2)(z) along the magnetic field as a Boltzmann factor plus a 
correction e(z); we shall show explicitly that e(z) is small. Inserting Eqs. (41) into (36), we find 
that the x-dependence mostly cancels out of the equations, validating the assumptions made in 
the ansatz. In places where there is a remaining dependence on x, we simply evaluate it at x=0. 
We expect that this procedure will preserve the qualitative properties of the solution. After 
making one additional well-justified approximation, dropping the last term of (39b) which is 
small when the density at the sheath interface is much less than the central density no, Eqs. (36) 
reduce to two coupled ordinary differential equations for <j)(2)(z) and e(z), 

exp V
2) ^ + £- 

+ e-l = 
biv:i_ 
2  ve 3z2 

exp 
e<J>' ,(2) 

•+e 
3 e<}>' (2) 

dz  T, 
(42a) 

(42b) 

Equation (42b) can be integrated, using the boundary conditions £(0)=4>(2)(0)=0, to yield an 

algebraic relation between e(z) and <{>(2)(z), 

ve £ = —— 
V   * ve MV: 

,(2) 
-1—-—+exp 

^ed>(2>^ 

M 

(43) 

For a strongly magnetized plasma, Ve/ve* « 1, and thus e«l as anticipated.  Neglecting e(z), 
Eq. (41a) reduces to the Boltzmann relation 

S»(,\- nu'(z) = exp 
Utf2\z)^ 

(44) 

and Eq. (42a) reduces to 
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b2^JL_=n(2)(z)_l, (45a) 
dz 

where 

g.b/Mvi + mve« (45b) 

\     2Mv; 

The solution to Eq. (45a) with boundary condition (38b) is 

hv- sinh(z/bj 
n(2)(z) = l-x    '   ,   ,-v        )'Jy (46a) 

bVi +cs coth(L/b) sinh(L/bj 

Equation (44) then gives 

(46b) e<|)(2)(L) 
■ = In 

Te Vcs+bviy 

Equation (45) indicates that the end effects are felt only in the immediate vicinity of z=±L. Under 

typical LAPPS conditions, b is about 3b, or about 3 cm. The plasma density is uniform to 

within 1% for lzl< L-5b, and to the same accuracy the ion flux to the substrate is uniform and 
given by 1-D ambipolar flow. To avoid end effects and maintain uniformity of processing, it is 

only necessary to specify that the substrate be smaller than the plasma length L by about 5b , i.e. 
in a typical LAPPS system with L=100 cm, the substrate size could be up to 70 cm. 

Note   that    the    densities    at   x=b   and   z=L    are    related   by   n(z=L)/n(x=b) 

= [(MVi +mve *)/2MVi]1/2.  Therefore the difference in potential between x=b and z=L (the 

side wall and end wall) is dominated by the coefficients of the logarithm in Eqs (40 and 46b). 
The end walls float at a more negative potential than the side walls. This potential difference 
develops to inhibit the free flow of the electrons along the magnetic field. For typical LAPPS 
parameters, this potential difference turns out to be less than the electron temperature, i.e. less 
than about half a volt. 
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4.7. Two Dimensional Diffusion Model for LAPPS, Conducting Boundary 

If the bounding surfaces are conductors, electric current can flow from the plasma to 
points on the boundary, but of course the total electric current flowing out of the plasma must be 
zero in steady state. If the walls are grounded, one may anticipate a tendency for the ion current 
to the side walls to be balanced by electron current along the field to the end walls, since the 
electron mobility is much greater along the magnetic field. In fact, the last subsection showed 
that for zero wall current, the end wall floats down to a lower potential than the side wall. 
Correspondingly, if the entire surface is grounded, current would flow from the end wall to the 
side wall. 

However, the boundary may consist of electrically isolated conducting regions biased to 
different potentials, and this strongly influences the plasma current flow pattern. For example, if 
the end walls are biased slightly negative with respect to the side walls, to exactly the level 
discussed in the previous section for insulating boundaries, then the plasma can be forced into an 
ambipolar diffusion pattern (with zero electric current) similar to that which occurs for insulating 
boundaries. If, on the other hand, the side walls are biased strongly negatively with respect to the 
end walls, then energetic ion bombardment of the side walls will occur, with all of the electron 
flow to the end walls. A dc-biased configuration of this type might be used to process a 
conducting substrate, and it is also of interest in connection with one of the initial experiments 
performed at NRL. A general analysis is quite complicated and will not be attempted in this 
paper, but we shall outline the physical principles that govern the density, potential and flow 
within the plasma and sheath, and then proceed to a special case where an analytic solution is 
available. 

The conducting boundary case is governed (within our diffusion approximation) by the 
same two equations (36a and b) that applied to the insulating case, and the Böhm boundary 
condition (37) also applies to both cases. However the complexities of the conducting case arise 
from the electron flow, which is reflected in the other required boundary condition. We recall 
that Eqs. (36a and b) apply only in the quasineutral plasma, and therefore a boundary condition 
is needed on the sheath-plasma interface. Such a condition must be inferred from the control 
parameter in an experiment, which is normally the potential <j>w on the conducting surfaces. Let 
us assume the end walls are grounded, and consider first the case where the side wall is biased to 
a potential <|>W«-Te, so negative that electron current to that wall is suppressed. Then there must 
be no electron flux into the sheath, and Eqs. (33) and (38) indicate that the appropriate boundary 
condition at the sheath-plasma interface on the side wall is 

Te 9n      9<t>      w 

t&^äT"-^- (47) 

Within the plasma, the electron current in the x-direction may not be exactly zero, as it is on the 
interface, but if there is any electron current it should be in the outward direction. Thus 
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3<^, (48) 
dx     n dx 

and the potential drop from the plasma center to the interface should be no more than a few times 
Te. The potential drop §s across the sheath at the side wall will be nearly equal to <j>w, and since 
the sheath is free of electrons, the ion current to the wall is determined by the Langmuir-Childs 
ion diode equation, which for (V ions is 

J(A/cm2) H necs = UxlO"8^^ (49) 
s (cm) 

The potential drop from the plasma center to the end wall is determined by the requirement that 
the electron current to the end wall be equal to the ion current to the side wall, and this ensures 
that the plasma floats at a slightly positive potential, of the order of Te. 

If the side walls are grounded or biased to a small negative potential (of the order of Te), 
there will be some electron current Jex flowing from the plasma to the side wall, but because of 
the electron mobility anisotropy, Jex will be less than the ion current J^. The sheath potential at 
the side wall is determined by the requirement that the electron current arriving at the sheath 
from the plasma be equal to the electron current penetrating the sheath potential barrier to arrive 
at the wall. The remaining electron current flows to the end wall, and as in the previous case the 
plasma potential floats at a slightly positive value determined by the requirement that the total 
electron current to the walls be equal to the ion current. 

As noted above, a slight positive bias of the side walls can lead to equal electron and ion 
flux to these walls, i.e. zero electric current to the side walls. 

A complete mathematical formulation of these concepts would depend on the solutions to 
Eqs. (36a and b) subject to the appropriate boundary conditions. This is a rather complex 
problem, because up to this point we have considered boundary conditions on the current, but for 
the conducting wall it is the potential which is specified along the wall. Furthermore, depending 
on the current density along the sheath edge, an equipotential sheath edge does not necessarily 
imply the wall is an equipotential (See Eq. (25b)). However the problem simplifies if we 
consider the case of side walls negatively biased to such a low potential that electron current is 
completely cut off. Then, even if the potential along the sheath edge turns out to vary, this 
variation can be compensated by a variation of the sheath potential such as to set the side wall to 
an equipotential. Thus the ion current along the sheath edge is necs at each point. Since the 
sheath current and voltage are related by Eq. (49), there may be a slight variation in sheath 
voltage and sheath width along the side wall. 

For the case of the strongly negatively biased side wall, simplifications occur if we 
additionally restrict ourselves to situations where (i) the electron friction along the magnetic 
field makes a negligible contribution to the total electron momentum equation, and (ii) the 
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magnetic field is sufficiently large that the electron cross field motion is suppressed. In that case, 
the Boltzmann relation 

e(4>-4>0) = ln 
'n> 

KnoJ 
(50) 

holds everywhere in the plasma, and Eqs. (34) and (35) reduce to a simple scalar diffusion 
equation 

Mv 
^Vn = -S, (51) 

where the diffusion coefficient is equal to the ion diffusion coefficient for an unmagnetized 
plasma. In this case, the potential drop from the plasma center to the plasma-sheath interface is 
larger than is the case for one-dimensional magnetized-ambipolar flow, discussed previously. An 
approximate Green's function analysis of Eq. (51), keeping only the single term in the expansion 
in x which corresponding to the maximum wavelength, leads to the approximate solution 

n = — 
16W 

ft D   sinh(7cL/b) 
-sinh 

7t(L-z) 

2b 
cosh 

7t(L+Z) 

2b 
-1 

-t-sinh 
7ü(L+z) ( 

2b 
1-cosh 

v 2b 
sm 

7c(x + b) 
(52) 

2b 

which shows that the flow to the side wall is uniform to within 1%, everywhere within the range 
-(L-3b) < z < (L-3b), i.e. to within a few cm of the end plates. However, we show in Appendix 
B that the validity condition for assumption (i) is that 

■«. 

Mv; 

mv. 
(53a) 

and the validity condition for assumption (ii) is 

L    ne —«—- 
b      v. 

(53b) 

In LAPPS, it is always true that L/b » 1, but Eqs. (53) show that this solution applies only when 
L/b is not too large. The solution does apply reasonably well to an experiment which is 
discussed in the next section, but not to the larger aspect ratios planned for LAPPS applications. 
In situations where Eqs. (53) do not hold, we do not expect the plasma density or ion flux to be 
uniform in z.    In processing large conducting substrates, we anticipate that it would be 
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advantageous to electrically isolate the substrate, so as to restore the excellent uniformity which 
LAPPS provides for insulating surfaces. 

5. Comparison with Experiment 

A preliminary experiment was performed to explore the nature of ion flow to a substrate 
placed parallel to the plasma sheet. Although the experiment was performed with a minimal set 
of diagnostics, the results are of interest and will be reported here. 

The experimental apparatus is shown in Fig. 5. In oxygen at pressure 50 to 65 mT, a 
discharge was drawn from a slotted hollow cathode 2 cm wide x 15 cm long to a grounded anode 
20 cm away. The cathode was pulsed to voltage -1 kV for a duration of 200 usec. A slot 1.25 
cm wide x 6.25 cm long was cut into the anode, allowing a beam of energetic electrons, guided 
by a 70 G magnetic field, to pass through the anode into a grounded chamber which we call the 
"toaster." The discharge current was 7 A, but the fraction of the discharge current which was 
carried by the electron beam and thus penetrated into the toaster was not measured. However, 
these beam electrons originate as secondaries emitted by the surface of the hollow cathode under 
ion bombardment. Normally the secondary emission coefficient is about 10%, and one therefore 
expects (in agreement with previous measurements on similar hollow cathode sources) that about 
10% of the discharge current will be carried by the beam. The beam current density is thus 
expected to be about 30 mA/cm2. The beam ionized the gas in the toaster to create a plasma 
sheet there. Two metal collector plates were placed inside the toaster, one on each side of the 
plasma sheet. Collector 1 was located at x=bi=a+0.6 cm, and Collector 2 at x=b2=a+1.0 cm, 
with a=0.62 cm the half-width of the beam. The entire apparatus was enclosed in an acrylic 
pressure vessel, and the plasma was visible from the sides. The collectors were dc-biased to the 
same negative bias <t>bias, which was varied in steps of 10 V from 0 to -120 V, and the currents 
Ix(t) and I2(t) to each of the collectors were measured over the duration of the discharge. 

Key observations include the following, (i) At zero bias, the steady state values of L. and 
I2 are zero, (ii) For all cases with negative bias, Ii(t) and I2(t) are positive and after -40 |xsec 
reach values Ii and I2 which are essentially steady state, (iii) The dependence of Ii and I2 on fa^ 
is shown in Fig. 6. Ii and I2 have large positive values at <t>bias = -10 V, the first measured value 
of negative bias, and then Ii and I2 increase slowly (by roughly a factor of two) as -foias increases 
to 100 V. At this point, Ii and I2 appear to saturate. For (foias < -120 V, there was visual 
evidence of an additional discharge striking from the collector plates, (iv) As the pressure 
increases with fen held constant at -30 V, Ii and I2 fall off as shown in Fig. 7. (v) The ratio Ii/I2 

was -0.75 in all cases. 
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We now consider the interpretation of these data in light of the simple model developed 
in Sees. 4.5 - 4.7. For the parameters of these experiments, with L = 15 cm, inequalities (47) are 
satisfied, so we apply the model developed in Sec. 4.7. 

As seen in Sec. 4.6, a slight positive bias of the side collectors (relative to the end walls) 
is sufficient to draw electron current, equal and opposite to the ion current, to the collectors. For 
the parameters of the present experiment, this bias is only 0.3 V. Hence, we expect essentially 
zero electrical current to the collectors when they are at the same potential as the end walls. This 
is in agreement with the experiment. 

When the collectors are biased to negative voltage greater than a few times Te, the theory 
predicts that a uniform ion current, specified by the diffusion equation, Eq. (51) for 
unmagnetized ions, will flow to the collector surfaces, and electron current will flow only to the 
end walls. Te was not measured in this experiment, but a theoretical calculation indicates that Te 

should be about 0.5 V, and a subsequent LAPPS experiment [21] measured Te=0.6 V in a similar 
oxygen plasma. Thus one expects the ion current to the collectors to be at its saturated value for 
all of the measured cases with negative bias, since <|>bias < -10 V in all of these cases. However, 
the experiment showed a slow increase in collector current as -$bias increased from 10 V to 100 
V. 

The current to the negatively biased collectors is determined not only by the Böhm 
condition, but even more fundamentally, by the plasma production rate. The increase in ion 
current with bias voltage appears to indicate an increase in plasma production rate. We believe 
that the explanation for this is as follows. Ion bombardment of the collectors liberates electrons 
from the surface. For most metals, the efficiency of this process is about 0.1 electrons per ion, 
rather insensitive to the ion energy in the range 10 eV to several hundred eV [31]. These 
electrons are then accelerated through the sheath into the plasma, where they can ionize the gas if 
their energy is high enough. At bias voltage -10 V, less than the ionization potential of 02, no 
secondary ionization can occur, and the secondary electrons have no effect on the ion current to 
the collector. Thus we expect that the measured collector currents at foias = -10 V are a faithful 
representation of the ion flow from the beam-generated LAPPS plasma. However, as -tybias 

increases above 12V, the cross-section for ionization by the secondary electrons increases, 
reaching a maximum when -^ias = 120V. Even at 100V, the voltage is not sufficient for a self- 
sustaining cathode fall [32], so the collector bias will not control the discharge. Nevertheless, the 
additional ionization can substantially increase the ion density near the sheath, and thus 
(according to the Böhm condition) the ion flux to the collectors. Indeed, secondary discharges 
are visible near the collectors when —<j>bias ^ 100V. 

The data on pressure scaling of the collector current was taken at bias -30 V, where there 
is no more than a moderate effect from secondary ionization. To interpret this data, we use the 
unmagnetized scalar diffusion equation (51). As discussed in Sec. 4.7, this diffusion process 
results in very nearly one-dimensional uniform flow, except for small regions at the ends. Thus 
we may apply the one-dimensional diffusion/recombination theory developed in Sec. 4.5, using 
however the unmagnetized-ion diffusion coefficient Dj=Te/MVi rather than the ambipolar 
diffusion coefficient (26).   The geometry of the experiment is not quite symmetric in x, as 
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assumed in the theory, since the offsets bi and b2 are different, but we simply apply the theory to 
each collector with its own value of b. With all of these simplifications, we may list the scaling 
of the various quantities characterizing the plasma and the ion flow to the substrate, in terms of P 
in torr and Te in eV: ionization source S = 1.8xl018P cnfV, recombination coefficient 
ß=2.5xlO-8Te~1/2, diffusion coefficient Di=1.7xl03TeP

_1 cm"V, characteristic density [Eq. 
(31a)] n0=8xl012P1/2Te

1/4 cm'3, characteristic length [Eq. (31b)] x^xKT^V3'4 cm, 
characteristic ion flux Fo=Dino/x0 cm"V1. The two dimensionless parameters characterizing the 
diffusion/recombination process are A=1.4, and B-A=1.4 for Collector 1, B-A=2.3 for Collector 
2. In both cases, the parameters fall into Regime 2 defined in Appendix A, and shown in Fig. 4, 
where the dimensionless ion flux is given by Eq. (All). Multiplying the dimensionless flux by 
the characteristic flux F0, the electron charge, and the area (36 cm2), we find the predicted current 
to the collector to be 

8XIO-V
8
P-

I/2  (54) 

b-a + 6xl0-2Te
5/8p-3/4coth(9Te

5/8p-3M) 

where a and b are in cm. Normalizing the current predicted by Eq. (54) to the measured current 
to Collector 2 at P = 60 mTorr, we find Te=0.4 eV, in reasonable agreement with theoretical 
predictions and evidence from other LAPPS experiments. Using this value for Te in Eq. (54), the 
predicted currents Ii(P) and Ii(P) are compared to the measured currents in Fig. 7. The 
agreement is quite reasonable, given the many approximations and simplifications in the theory, 
and the preliminary nature of the measurements. 
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6.   Summary 

In this paper we have discussed the key features of LAPPS and found that it offers 
significant improvements in performance over other plasma reactors. Benefits include (i) high 
uniformity over large area (up to and exceeding 1 m2); (ii) high efficiency; (iii) independent 
control of ion and radical fluxes to substrates; (iv) wide operating range in gas type and pressure; 
and (v) low and externally adjustable plasma temperature. Unlike other reactors, LAPPS uses an 
electron beam of several keV to ionize and dissociate the constituent gases. As a result, the 
primary control parameters are the beam current, the standoff distance from beam to substrate, 
and the gas type and pressure. No other plasma source is known to offer a similar degee of 
control, flexibility, and efficiency over such a large area. Nevertheless, LAPPS does have 
disadvantages, including the tradeoff between efficiency and uniformity (depending on usage and 
whether beam energy is recovered), the need for a beam source, and the need for a magnetic field 
(-200 G) to confine the beam. However efficient beam sources are now available and are being 
developed for LAPPS. Also, we have found that the magnetic field has little effect on ion 
transport in LAPPS. 

A comparison of a preliminary experiment on LAPPS with theory showed good 
agreement, and more extensive experiments are now comoing on line. [16,17, 21,33,34]. These 
experiment use an advanced hollow cathode source [15] which is efficient and can operate pulsed 
or cw to produce meter sized plasmas. Results so far have been on pulsed plasmas with smaller 
area. Diagnostics include a Langmuir probe to measure electron density, electron temperature 
and plasma potential, an X band microwave interferometer to measure line average electron 
density, and a mass spectrometer to measure ion mass and energy. Future upgrades will include 
laser induced fluorescence. While the preliminary experiment we have analyzed was for dc bias, 
etching experiments, will be done with rf bias [17]. An initial theory of sheaths with rf bias in a 
LAPPS plasma is also underway [35,36]. 
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Appendix A, Approximate Analytic Solutions a One Dimensional Plasma 

We consider here approximate analytic solutions for Eqs. (26-30). We begin by writing these in 
dimensionless form 

N" + 1-N2=0, for 0<X<A,                                                                    (Ala) 

N"-N2 = 0, for A<X<B,                                                                   (Alb) 

N'(0) = 0, (A2a) 

N(B) = 0, (A2b) 

where N=n/no, X=x/x0 and a prime denotes d/dX. We shall also use the notation subscript-A for 
the value of a variable at X=A, subscript-B for X=B, and subscript-0 for X=0. Equations (Al) 
can be solved by quadrature. Integrating (Ala) twice from 0 to X and applying the boundary 
condition (A2a), we find 

X = 
dN (A3) 

N(X) V2[N0-N]-|[N0
3
-N

3
] 

Integrating (Alb) from X to B gives the useful relation 

N,2 = NB
2+§N3,orequivalently F2=FB

2 + |N3, (A4a) 

where FB is the dimensionless flux at the wall. Integrating again gives 

rN(X) 

B-X = 
dN 

o      >/FB2 + iN3 
(A4b) 

Equations (A3) and (A4) indicate that N(X) peaks at X=0 and falls off monotonically with 
increasing X, as might be expected. The solution for N(X) and FB can be obtained by requiring 
continuity of N(X) and N'(X) at X = A. Instead of proceeding numerically to a general solution, 
we shall consider separately analytic approximations in each of the four limiting regimes with A 
large or small and A-B large or small. 

Regime 1: Recombination insignificant in both source and transport regions (A and B 
small) 
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If recombination can be neglected, i.e. the term N2 is small, Eqs. (Al) reduce to a simple 
diffusion equation for which the solution is 

N(X) = N0-±X2, 0<X<A, (A5a) 

N(X) = NAfI1T = (B-x)FB.       A<X<B. (A5b) 
a— A 

Requiring continuity of N' at A, we find the central density to be 

N0 = AB + |A2, (A6) 

and the flux to the substrate is simply 

FB=FA=A. (A7) 

In this limit, all ions diffuse to the substrate and the flux to the substrate is simply equal to the 
rate at which new ions are produced by beam ionization. The validity conditions for this limit 
are as follows: neglect of recombination in the source region requires 

N0 = A(B-A) + |A2«1, (A8a) 

and evaluation of an iterative correction shows that the neglect of recombination in the transport 
region is valid if 

A(B-A)3« 12. (A8b) 

Regime 2: Recombination dominant in the source (A large), 
but insignificant in the transport region (B-A small) 

We consider next the limit where most of the ions produced in the source are lost to 
recombination, but little additional recombination occurs in the transport region. In the source 
region, we then expect N to be just less than its limiting value of unity, and we look for a solution 
to Eq. (Ala) in the form N(X) = 1 - 5N(X), linearizing in 8N. We find the solution to be of the 
form 

N(X) = l-(l-N0)cosh(>/2X),  forX<A. (A9) 

In the transport region we can use the solution (A5b). After matching at X = A, we find the 
central density No to be 
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NnSl- 
V2(B - A)sinh(V2A) + cosh(V2A)' 

(A10) 

and the flux to the substrate to be 

P 2L~  (All) 
B ~ >/2(B - A) + coth(V2A)' 

The validity conditions for this regime, in addition to A»l are 

V2(B-A)tanh(V2A)»l, (A12a) 

B-A«3. (A13b) 

Regime 3: Recombination insignificant in the source (A small), 
but dominant in the transport region (B-A large) 

In the source region, we again use Eq. (A5a) for N(X).   In the transport region, we 
approximate the integral in Eq. (42b) by using the relation 

dw 2.86w 
o Vl + w3     2.5 + w' 

(A14) 

which gives 

N(X) = - 
0.87(B-X)FB (A15) 

1-031(B-X)FB
1/3 " 

Approximation (A14) is simple and yet is uniformly accurate to within 15% for any value of X. 

In all cases, the flux FB to the substrate is constrained to 

FB< 
35 

(B-A)3 
(A16) 

to keep the denominator of Eq. (Al5) positive. In the present limit, the substrate is remote from 
the source, and FB is small because most of the ions recombine in the transport region before 
reaching the substrate. We shall show that (A16) must then become very nearly an equality, in 
order to prevent NA from becoming vanishingly small. 

Matching N(X) from (A5a) and (A 15) at X = A we find 
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,    , 0.87 (B-X)FB /A1„N 
N(A)-N'-*A  -1-031 (B-X^"- (A17) 

and matching the flux from (A4a) and (A5a) at X = A gives 

FA
2 = A2=FB

2 + f(N0-lA2)3. (A18) 

Equation (A 18) can be solved for the central density, 

N0=(|)'/3A2/3 + iA2, (A19) 

and using (A18) in (A17) yields an equation for FB, 

,,,      0.87(B-A)FB /A^ 
1 - 031(B - A)FB

1/3 = -^. (A20) 

[&2-V\ 
When FB is small, the RHS can be neglected, yielding the simple result alluded to previously, 

35 
FB= 3. (A21) B    (B-A)3 

This approximation is valid when the RHS of (A20) is « 1, which holds when 

(B-A)A1/3»5 (A22) 

In addition, the approximation in the source region requires No « 1, and according to (56) this 
requires 

A «0.6. (A23) 

Regime 4: Recombination dominant in both the source and the transport region 
(A and B both large) 

In this case both the source region and the transport region are thick, and ions are mostly 
lost to recombination in both regions. We use (A9) for N(X) in the source region, and (A15) in 
the transport region. The matching conditions for density and flux at X = A give, respectively 

r- 0.87(B-A)FB NA=l-(l-N0)cosh(V2A)=i_03i^(B_AyBl/3, (A24) 
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FA
2 = 2(1- N0)

2 sinh2(V2A) = FB
2 +| NA

3. (A25) 

These equations yield an approximate solution 

1 (A26) N0 
= 1- 

V3sinh(V2A)' 

FB = 
35 

"(B -A)3 » 

valid when 

A»l, 

B- A »8. 

(A27) 

(A28) 

(A29) 

The parameter space occupied by each of Cases 1 - 4 is shown in Fig. 4.   There the 
boundaries of each region are drawn where equalities replace the strong inequality conditions. 
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Appendix B,  Further Discussion of Two Dimensional Diffusion with Conducting 
Boundaries 

For a strongly magnetized plasma with side walls biased strongly negative, our 
approximations are that the potential is given by Eq. (50), the density is a solution to Eq. (51), 
and the electron motion is only in the z direction. With these approximations, a simple 
Green's function solution gave the solution for density in Eq. (52). Now let us check the 
consistency of the solution. The electron continuity equation must also be satisfied, and our 
assumption has been that it is satisfied by electron flow in the z direction. Then the electron 
velocity is 

uez=-jSdz' (Bl) 

where we have assumed that due to the symmetry about z = 0, vez(z=0) = 0.  The correction 
term in the z component of the electron momentum equation is then 

mv  z 
_EXe.JSdz- (B2) 

n   o 

and this must be small compared to the terms retained in this equation, e.g. T—Inn. 
dz 

Assuming the density drops from its maximum value to zero in a distance of L, we find that 
the assumption is verified as long as 

mveSL<<— (B3) 

Assuming that the density is determined by Eq.(52), one can relate the central density to S and 
thereby derive the first inequality of Eq. (53a). 

The collisions in the z component of the electron momentum equation effectively give 
a correction to <j) of order 

z       mv   2 

e54> = jdz'-^-Jdz"S (B4) 
o       n   o 

Note that this correction to § varies with x because n does. Our model assumes the d&()/dx is 
small compared to the terms retained in the x component of the electron momentum equation. 
Also, this term leads to a z dependence of UeX in the bulk plasma which cannot be canceled by 
simply varying the potential of the side wall. For our approximation to be valid, this velocity 
must be small compared to the ion velocity in the x direction. If we neglect the z dependence 
of S and n, we find that 
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e5<D=mVeSz2 <B5> 
^     2n(x) 

so that the contribution of d8<l>/dx to u„ at z=L is given by 

5Uex(z = L) = 3^|L (B6) 
ex 2ve*n23x 

The ion velocity uix from the diffusion model is given roughly by D/b - Sb/n, so the condition 

6uex« uix is 

_^_«1 (B7) 
2ßeV 

This is the second inequality in Eq. (53b). It shows how large the magnetic field must be as a 
function of electron collisionality and system aspect ratio for cross field ambipolar diffusion to 
be suppressed in favor of electron flow along z. If Eqs. (B7 and Bl 1) (and thereby Eq. (44)) 
are violated, electron motion cannot be one dimensional in z; u« will necessarily be non zero 
at points within the plasma bulk, even if it is zero on the wall itself. In that case, we expect 
that the density and flux will be non-uniform in z. 
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Figure Captions 

1. A schematic of the LAPPS plasma processing system. 
2. Demonstration of LAPPS etching of photoresist in an oxygen plasma. 
3. The density profile and governing equations for the LAPPS plasma in the one dimensional 

diffusion approximation 
4. The parameter space for the one dimensional diffusion model. 
5. A schematic of the initial LAPPS ion collection experiment 
6. Collector currents as a function of bias voltage. The light circles I2 is for the plate 0.6 cm 

from the source edge, and the solid diamonds Ii are for the plate 1 cm from the source edge. 
7. Experimental results and theoretical calculation for the collector currents as a function of gas 

pressure for a bias voltage of minus 30 volts. The light circles I2 are for the plate 0.6 cm for 
the source edge, and the solid diamonds Ii are for the plate 1 cm away. 
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